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ABSTRACT

Autonomous Mobile Robots investment is growing. Consequently, they need
to percept the environment in many different conditions. Thermal cameras
bring the possibility to fill the gap in conditions that ordinary vision sensor
leave. In this thesis, an adaptation of the state of the art Visual SLAM software,
ORB-SLAM 2, for thermal cameras is presented. This implementation is
presented alongside an example application with a Stereo camera based on an
easily expandable MIMO system.
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CHAPTER

INTRODUCTION

"...robotics navigation, where a robot must estimate its location relative to its
environment, while simultaneously avoiding any dangerous obstacles.” Richard
Szeliski

1.1 INTRODUCTION

ANKS TO THE computing development over the last years, real time per-
T:eption systems have come to reality. These perception algorithms can
tell a robot how is the environment that surrounds it and at the same time
solve for the position of the robot in that environment by performing what
is called SLAM (Simultaneous Localization and Mapping). The robot must
know the environment to achieve a goal successfully, safely for itself and for
the environment (people, objects or facilities).

1.2 PROBLEM STATEMENT

Aerial vehicles need to localize themselves to perform diverse tasks. A mobile
robot normally fuses data from different sensors (e.g encoders that read the
angle of the wheel) and given certain physical restrictions (e.g. the robot
moves in a 2D plane and there is no sliding in the wheels). Aerial vehicles
do not have a reliable and fast way to localize themselves as ground robots
do, that is why visual odometry is normally required. This visual odometry
can suffer under different illumination conditions such as dusk, smoke or low
luminance.

Autonomous Mobile Robots’ control architecture have normally a delib-
erate and a reactive layer. The robot needs to react fast to changes in the
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map, those changes will occur specially in outdoor applications where the
environment can be unknown in the throughout the mission. In this sense the
robot has to have a high frequency information channel for the information
on the environment. GNSS (Global Navigation Satellite System) can give an
absolute position but the frequency and delays have to be taken into account.
Those restrictions make additional inputs to the estimation necessary.
Having an UAV patrolling a place can give cheap and valuable information
compared to the cost of having a helicopter doing the same route. It also gives
the possibility to do routes that are not possible using traditional air vehicles.
This routes are often done in poor visibility. Thermal cameras perform better
than conventional cameras in low visibility conditions[15]. As an example,
flying an UAV with a thermal-based SLAM system over last summer Portugal’s
fire could have given relevant input for the fire-fighters. Certainly, using a
multi-spectral based SLAM (Visual and thermal spectrum at the same time)
can palliate the problems that separately could be present. Furthermore, in
rescue applications thermal cameras can be useful to detect a victim [6]

1.3 PROPOSED SOLUTION

The proposed solution is to use a thermal camera alongside a RGB Stereo
camera and the regular sensors that normally are on-board the UAV (Inertial
Measurement Unit, GNSS) for SLAM. Given that we have at least the thermal
camera and the stereo camera to get a position estimate of the robot. Moreover,
since different applications normally imply different sensors and actuators,
the estimator has to be able to handle different inputs with minor changes in
the code.

But why using a Thermal camera? Conventional cameras make SLAM
algorithm to suffer under sudden illumination changes[5]. Moreover, thermal
cameras are decreasing in price and the advantages that can provide are
starting to worth the cost in certain applications rescue and terrain analysis.

1.4 REGULATORY FRAMEWORK

The regulations that must be taken into account on this project vary according
to the application and the country in which is used. I would like to focus
more on the aerial vehicles since those can be the most restricted ones. On
this project, the bare fact that a thermal camera was used does not mean any
challenge compared to the fact that a Drone is used.

1.4.1  Indoor applications

On indoor applications, aerial space regulations are not applied directly since
the aerial space does not belong to the State. Thus, just an operator and



1.4. REGULATORY FRAMEWORK 5

the authorisation of the property would be needed. Both assuming the risk
associated to the application given by a proper security study.

SORA (Specific Operations Risk Assessment) from JARUS is normally
advised as a methodology to use; failing this, Scandinavian methodology, used
by most of airlines could be used.

1.4.2 Outdoor applications

The current Spanish regulation applied in Spain is RD 1036/2017 published
December 29th 2017. The current regulation does not allow fully autonomous
flight, just automatic given that the pilot cannot loose control of the Drone.
This type of flight is called BVLOS (Beyond Visual Line of Sight) and an
advanced pilot certification is required plus a NOTAM (Notice To Airmen)
with its associated TSA.

This Spanish regulation is not part of the EASA (European Aviation Safety
Agency) regulations. This implies that this regulation does not apply to the
rest of the European Union. Therefore, each State has its own regulations.
Although, there is a group of experts gathered to state guidelines on this
topic called JARUS (Joint Authorities for Rulemaking on Unmanned Systems).
This group works on giving a "single set of technical, safety and operational
requirements for the certification and the safe integration of Unmanned
Aircraft Systems (UAS) in airspace and at aerodrome" [9]

In CS-LURS V.1.0 page 111 it states that: "Electrical connections of externally
mounted payload and accessories, such as cameras, should be sufficiently protected
to preclude electrical fires and the devices should not be likely to penetrate a fuel
compartment.” This is a valuable point, given the application in an aerial
vehicle, could be possible to power the thermal camera with the same source
of electricity as the vehicle to minimize weight. That connection needs to
be done in a safe way so that there are no undesired shortcuts that would
endanger the mission.
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CHAPTER

STATE OF THE ART

2.1 APPLICATION

As introduced above the goal in this project is to use Thermal cameras as
an input to Visual SLAM for Mobile Robots. The measurements are taken
alongside other common sensors in mobile robots such as LIDAR, IMU and
other visual spectrum cameras.

LIDAR is a widely used sensor in Mobile robotics. The most common tech-
nology relies on one or several laser distance meters that take measurements
on a circular movement. This sensor has good accuracy and can give high
volume of information that can be analysed conforming a relatively dense
point cloud comparing to Visual methods. A good SLAM can be obtained just
by using this sensor. Although, weather can heavily harm this measurements.

IMUs are present in most of AMR. This subsystem outputs measurements
of angle and acceleration at high frequency. By integration and differentiation
we can obtain velocities, position, angular speeds and angular accelerations.
The problem relies on the vias that these sensors have (specially the affordable
ones).

On the next page you will find table 2.1 in which the assumed properties of
the sensor are stated. We can clearly see that each sensor has its strengths and
weaknesses. This is why multi-sensor systems are made; a robot has to be able
to work safely for it, for the people and for the environment that surrounds it.
Specially in outdoor applications several conditions can make the perception
to suffer. Weather conditions might obscure LIDAR measurements, smoke
can be present in the environment harming RGB camera sight...
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As previously discussed, aerial information can be taken from a multirotor
at a lower cost compared to conventional methods such as Helicopters. This
opens the possibility to get information on rescue and prevention missions.
Since these cameras can offer a great benefit even before applying Al (Just by
visual inspection) we believed it was a great opportunity to research on the
benefits that these cameras can provide for robot localization. DJI, which is
one of the biggest companies in drones and FLIR, which is also well-known for
their infrared cameras are investigating this opportunity and are developing
a drone with infrared vision. The applications mentioned in their new non
cooled infrared camera ZENMUSE XT are promising.

m  Grid inspection
Solar Panel inspection
Search and rescue
Agriculture crop monitoring
Fire fighting

Indoor localization is also growing in mobile robotics. These applications
can be both on a terrestrial or aerial settings. The mining industry is making
a big investment on mobile robots and specially on poor visibility conditions
which make thermal or infrared vision a good ally.

KAIST In autonomous cars field, KAIST (Korea Advanced Institute of Sci-
ence and Technology) developed Multispectral Pedestrian Dataset (color +
infrared) and used it to take video of a walk-through by car of a city. Tracking
or distinguishing pedestrians is supposed to be easier on infrared due to the
high temperature of our bodies. This is a great possibility for colission evasion,
specially at night where even the human eye could not evade a collision.

Field robots Mining The mining industry is starting to use more AMR
equipped with thermal cameras. "In a mining environment, if visible light or
digital cameras are used for monitoring, they will miss out on any potential
defects as mining environments are often very dusty. Thermal can see through
dust and smoke due to their infrared wavelength, meaning that it is able to
detect any heat energy through most environmental conditions.” [4]

2.2 RELATED WORKS

Thermalvis by Stephen Vidas is a ROS package that tackled this problem
some years ago. "It was motivated by the need to adapt several computer
vision methods to thermal-infrared video. In particular, methods relating to
camera calibration, local feature tracking and 3D motion estimation. However,
the flexibility required to achieve this has resulted in several methods and
interfaces that should also be useful for people using regular video, or video
from other spectral ranges." says Vidas [18]. His work was really valuable for
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this project to understand the possibilities and limitations of Thermal cameras.
As an example, in Thermalvis he deals with the data interruption in the frames
by detecting it (NUC) and using that time to gather more information from
the last published frame.
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PROPOSED ALGORITHM

3.1 MOBILE ROBOT LOCALIZATION

The project is intended to give a localization given several inputs. In the
implementation data from a stereo camera and a thermal camera are used.
Each source of information is processed by a minimally edited ORB-SLAM 2
version independently and Robot Localization performs pose estimation from
both inputs. This pose estimation is done by applying an Extended Kalman
Filter (EKF) of the inputs. The whole system is connected by ROS so that more
sensors can be added with no mayor changes in the code as thought in the
proposed solution. The code can be found in the repository under request.

ir_camera

fir_camera/image_colormap

[ir_camera/image_8bit

JRQT_GRAPH

/AbdullaRecords

I

/ORB_SLAM2_MonoIR

stereo_big
[

Istereo_big/left/image_rect_color

Iy
/stereo_big/right/image_rect_color

/ORB_SLAM2_Stereo /stereo_loc

The OS system used was Ubuntu 16 64 bits with ROS Kinetic. This set was
used since most of the community of Autonomous Mobile Robots are using
Ubuntu and it is normally the operative system that the on-board hardware
has. For example Beaglebone, Raspberry Pi and Odroid can use this OS.

13
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Furthermore ORB SLAM 2 troubleshooting is big on Ubuntu. C++ was used
because it appears to be more optimal than Python and also since ORB SLAM
is coded in this language.

Before explaining what is a thermal and stereo video camera I would like
to briefly introduce you how conventional digital cameras work. A digital
picture can be seen as a group of small elements called pixels. Each pixel has
a level of light intensity associated. Although, how can we capture colours
then? We can define every colour as a combination of red, green and blue.

This conventional cameras show us pictures from the visible spectrum
(400-700 nanometers) but thermal cameras or infrared cameras take pictures
from 7.5 —13um, which mean that we can see heat. This pictures only have
one channel (grayscale that ranges from 0% as black and 100% as white).

Video is the acquisition of pictures within a small time lapse between
them. These pictures are called frames and the speed in which you take
frames is expressed in frames per second (fps). In the experiments we get
video from a thermal camera and a stereo camera.

3.2 CAMERA CALIBRATION

HE IDEA OF OBTAINING a 3D point from a monocular camera (2D) is some-
’]:hing that at first sounds like cheating. Although, if we know the camera
parameters we can know the ray (represented in red in figure 3.1) that is
composed by all of the possible 3D points that have a projection. Moreover,
if we have several images and we know the pixel correspondences between
them, we can determine the position of that points and track how is camera
frame moving.

P=(X,Y,2)

[}
[}
[}
1
1
1
1
1
1
I
1
vy

v

FiGure 3.1 — Perspective representation (Edited version of [1]).
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3.2.1  Camera Intrinsic Matrix

Even though camera manufacture is really precise nowadays, every camera
has unique intrinsic parameters:

fx s xO
K=| 0 fy Vo
0 0 1

3.2.1.1 fyand fy:

This parameters are the ratio between the focal length and the size of the pixel
in x and y directions respectively. Both parameters can be considered equal
and the results would not be affected with huge error. In other words, we
would assume perfectly squared pixels.

3.2.2  Skew (s):

This parameter represents how non perpendicular are the sensor axis. The
closer s is to o the more perpendicular the axis are.

3.2.2.1 X, and y,

This parameters are the coordinates of the center of the camera plane. One
might think that is the number of pixels in each direction divided by two but,
again, due to manufacturing imprecisions it is normally decimals away from
that ideal center.

3.2.3 Obtaining the parameters

The most popular and simplest way to obtain the camera parameters is to
use a known image placed in a scene and take several pictures of that image.
Typically a chequerboard is used and by giving the length of each square
and the number of squares in the chequerboard we can solve for the camera
parameters.

I used the camera calibration package from ROS to live calibrate the camera.
The procedure is simple:

m  We publish pictures from the camera to a topic.

m  We change the position and orientation of the chequerboard in the
scene.

m  The program will tell us when the data is sufficient

m  Finally it outputs a yaml file with the parameters

ORB SLAM uses a yaml file to specify the camera calibration parameters.
I used ROS camera_calibration package to obtain these parameters specifying
the node for the image acquisition.
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« st s@PB P LHY

=

-

Size

Skew

n” ok

rosrun camera_calibration cameracalibrator.py --size 7x9
--square 0.235
image:=/cv_camera/image_rawcamera:=/cv_camera

cv_camera

/cv_camera/image_raw /cameracalibrator

Then the program exports the images and the camera parameters. Unfor-
tunately the format is not the same as the one ORB SLAM 2 uses but we can
just fill the yaml file with the obtained camera parameters.

3.3 STEREO CAMERA

As humans we can see depth by comparing two images from our eyes. The
stereo camera uses this principle. Two cameras displayed normally coplanar
and arranged at a certain distance from each other called baseline.

Comparing these two images, in practice, means that we detect points
from one image and look for an alike point in the other. These points have to
be unique so that we don’t mismatch them. To make this possible the idea of
corner was developed thanks to the work of Chris Harris and Mike Stephens
[8]. These corners are regions in the image in which the gradient changes
abruptly in two linearly independent directions.
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Once we found the corners of an image we need to describe them so that
later we can compare them to another corner in another image. To do this
descriptors are used. A descriptor is a tool used to describe a certain point
in an image (e.g. FAST, SURE...) but with scale and rotation invariance. It is
important due to the fact that the corner can be rotated or at a different size
in the other image.

Looking for this descriptors can be done efficiently by applying SSD (Sum
of Square differences) or Cross Correlation and the epipolar line constraint.
This epipolar constraint is based on the assumption that the point detected
in one camera can only land on a line in the other camera frame. In this
sense the algorithm searches for this feature along the line. Epipolar lines are
horizontal in our case since both frames have the same pose but shifted by
the baseline.

X e
S
X e
£
X
0 og Ox
Left view Right view

FiGure 3.2 — Epipolar geometry.

Once matching is completed we can compute the depth of a point

tan(@)zi:ﬁ: Zp
x, X, Xp-D
f_ %
xp Xp—b

By computing the tangent of both triangles we obtain those equations. And
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now we can try to solve for Z, with the data given.

F(X,=b)=Z,x,

pr :xlzp
—fb= Zp(xr_xl) = Zp(_d)
b
i

Where x, — x; is defined as disparity.

3.4 THERMAL CAMERA

As introduced above, thermal cameras can capture pictures in the Infrared
spectrum of light. But using thermal cameras present several limitations[y,
18]:

m  Lower resolution

m  Poor SNR (Signal-Noise Ratio)

m  Data interruptions

The NU noise problem One of the constrains of thermal cameras is data
interruption. Thermal camera pixels have a non-uniform (NU) response
in terms of operation point and sensitivities[3]. "Non-uniformity can be
considered as a 1D flicker of the columns inside each frame"[16]. This visually
translates in lines in rows or columns (good examples can be found in the
article from Tendero, Landeau, and Gilles).

To deal with this problem thermal camera performs the non-uniformity
correction that produces the camera to freeze in a frame for even more than a
second. This delay can harm the tracking, specially if the NUC is happening
while moving[18]

3.5 ORB SLAM 2:

ORB-SLAM 2 is the second iteration of "A versatile and Accurate Monocular
SLAM System"[10]. This software computes the trajectory of the camera frame
in real time.

This software uses ORB descriptor which is developed based on FAST
keypoint detector and BRIEF descriptor [12]. The keypoint detector can be
tuned with a threshold given in the camera parameter file which is advised
to lower it when a low resolution image is used. It is important for our
application considering that the Thermal camera has a resolution of 164x129
(which is low).
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The developers of the software provide a Vocabulary so that the system is
already trained to recognize features from the application environment. In
this case the system is trained for urban ground footage but the system can
be trained to recognize features from an aerial point of view and even to get
vocabulary for thermal view. For testing purposes I did not create a specific
vocabulary for the application.

This software has presented good results with Monocular, Stereo and
RGB-D cameras on a CPU based system and even better results in the GPU
implementation. Although, this does not guarantee that this implementation
would work with the limitations that thermal cameras present. The system
implemented works in a ROS environment. Although, ORB-SLAM 2 is not
fully implemented to work on it and some modifications had to be made for
the application.

3.6 LAUNCH

The system can be launched by coding a file in which we state all the connec-
tions between nodes of the system as shown in figure 3.1 To launch all the
nodes and connections I wrote this launch file:

<launch>

<node name="ORB_SLAM2_Stereo" pkg="ORB_SLAM2" type="Stereo"
args="path_to_calibraton false">

<remap from="/stereo/left" to=
"/stereo_big/left/image_rect_color"/>

<remap from="/stereo/right" to="/stereo_big/right/image_
rect_color"/>

</node>

The first node to be launched is ORB SLAM 2 Stereo which takes frames
from two topics and performs the calculation of the trajectory. The default
names of the topics that ORB SLAM 2 subscribes to don’t match with the ones
in which we are publishing. I used the remap command to change the name
at which the node will subscribe to.

<node name="ORB_SLAM2_MonoIR" pkg="ORB_SLAM2"
type="MonoIR" args="path to calibration ir false">
<remap from="/image" to="/ir_camera/image_8bit"/>
</node>

Secondly, the Thermal camera slam node is launched and conveniently
remapped.

[ <node pkg="rosbag" type="play" args="path to bagfiles"/> ]




20 CHAPTER 3. PROPOSED ALGORITHM

Our source of data is in our case a rosbag from a mobile robot so we play
the recorded data from a footage around the university.

<node pkg="robot_localization" type="ekf_localization_node"
name="ekf se" clear params="true">

<rosparam command="load" file="ekf parameters" />
</launch>

Finally Robot localization is launched.

3.7 MONOCULAR IR NODE

In this node I modified ORB-SLAM 2 so that it would have an extended point
object. This point would not only have a three coordinate vector but also
would have a value for the temperature on that neighbourhood. We can know
that temperature by reading the value of that pixel from the current frame
higher values correspond to higher temperatures, that means the whiter the
pixel the higher the temperature on that point. In theory, the 3D point must
have the temperature represented in the pixel since we know the camera
calibration.
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FiGure 3.3 — New Map Point.

Figure 3.3 explains how the implementation assigns temperatures. When
a new point is proposed to be created by the Tracking node, the algorithm
checks the information from the camera provided by cameraCalibration.yaml
and if the camera is infrared we can get the data of the temperature of that
point from the current image frame and then create the extended MapPoint
object. In case of a non-ir camera the system would just assign a value of o
in the temperature field. This null value is treated by the algorithm as no
temperature on that point.
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FIGURE 3.4 — Draw Map Point.

This part of the algorithm, represented in figure 3.4, maps the temperature
from the attribute on each point and draws it in the 3D map according to that
mapping. A quite discrete mapping rule was used in the implementation. It
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assigns black to non ir points and depending on the temperature treshold
it colours the points in blue, yellow and red. A more gradual mapping of
temperature was also implemented. This mapping was done with OpenCV
applyColorMap function with a JET mapping. This mapping is a more visual
and familiar way to see temperature since the camera only gives you a range of
temperature in greyscale. This mapping can be seen in the following picture:

COLORMAP_JET - -

F1GURE 3.5 — Temperature Mapping.

3.7.1  Using ORB-SLAM 2 alongside ROS

N THIS SECTION the most important part of the code that launches ORB
SLAM 2 for the Thermal Camera will be explained.
ORB SLAM is not integrated in ROS but

we can feed the system with images from a

INITIALIZE ROS

ROS topic and publish the pose that the sys- NODE "IR_SLAM"
tem outputs on a topic. The program first 4
initializes the node on ROS with the name CREATE ORB_SLAM

OBJECT

IR_SLAM. Then it creates an ORB SLAM sys-

tem object. It needs a path to the Vocabulary v
and a boolean to decide if we want to visual- GRABBER OBJECT
ize the system as it runs. This is convenient

to reduce CPU workload when the viewer is l

< NEW IMAGE IN TOPIC? >

Grabber object that is in charge of feeding
images to the system. It need the reference
to the system.

Later the system waits until new frames
are published into the topic. When a new

disabled. Furthermore, we create an Image L

YES

image is published cv_bridge processes the
. . . CV BRIDGE N
message. cv_bridge is a crucial package for
the program since it gets ROS image mes- v
sages and converts it into OpenCV Mat type; B
which is the data type that ORB SLAM 2 HONOCHLAR
uses. In other words works as a translator l
between ROS and ORB SLAM 2. When the

image is converted to OpenCV format the
system is fed with it. ORB SLAM 2 needs to <ZZ:IRACK'NG STATUSﬂiI:
be initialized, this means that the system has
to solve for a good set of points to create a

YES
A 4

COMPUTE 6D POSE
FROM TF

v

PUBLISH 6D POSE
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sufficiently good map in the beginning from
which it will start expanding the map from.
The system status can be obtained so that
if the SLAM is not initialized the node will
not publish any message for pose. If the sys-
tem is initialized (Status = 2) the node will
solve for the 6D pose given the transforma-
tion of frame matrix from Track Monocular
Function.

3.8 STEREO

CHAPTER 3. PROPOSED ALGORITHM

E STEREO NODE is quite similar to the monocular thermal node.

As explained in the camera calibration
section, to optimize the search of features to
a one dimensional problem we do rectifica-
tion if needed. In our experiments we did
not need that rectification since the camera
has already two coplanar frames. For stereo
rectification the system needs the camera pa-
rameters. These camera parameters can be
found in the yaml file provided at initializa-
tion. To initialize the system we do the same
procedure as in the monocular case but we
tell ORB SLAM 2 that the type of tracking
will be stereo. In the case of Stereo we take
2 images each loop.

INITIALIZE ROS » CREATE ORB_SLAM
NODE "STEREO" OBJECT

e CREATE IMAGE
Mo NE £D RECT'F'CAT'?_’!’-"'"(_ GRABBER OBJECT
- -

LOAD SETTINGS
AND RECTIFY
NO
NOs i

< NEW IMAGE INTOPIC? ™

YES

h 2

CV BRIDGE

v

TRACK STEREO

< TRACKING STATUS = 27 ‘:‘;:]

YES

¥

COMPUTE 6D POSE
FROM TF

v

PUBLISH 6D POSE




EKF

E ExTENDED KaLMAN FILTER is a suboptimal filter for non-linear systems
Tﬁn a stochastic model base. Since the optimal estimator for discrete non-
linear systems is difficult to implement (Due to high requirements on memory
and computation) I used the EKF. This explanation is based on the book by
Bar-Shalom [2].

3.9 MODELLING

3.9.1 State space model
The general model for a stochastic model in discrete time:
x(k+1) =f[k,x(k), u(k),v(k)] (3.1)

Where x is the space vector, u is the input vector and v is the process noise.
Generally, f function is time variant. For this model the noise is considered
white, zero mean (expectation is zero) and additive so that the model is:

x(k+1) = flk,x(k), u(k)] + v(k) (3.2)
E[v(k)] =0 .
E[v(k)v(j)'] = Q(k)ox; (3-4)

3.9.2  Measurement model
Measurements are derived from the general model:
z(k) = h[k, x(k), w(k)] (3-5)

Where w is measurement noise. We will consider it also white, zero mean and
additive.

z(k) = h[k, x(k)] + w(k) (3.6)
E[w(k)] =0 (3.
E[w(k)w(j)'] = R(k)ox; (3-8)

We will suppose also that noises are not correlated.
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3.10 ONE LOOP ON THE ALGORITHM:

A first order EKF is based on a first order Taylor series expansion of the non
linear functions. In the dynamics and, if it was the case, in measurement
equation. The second point is to use the LMMSE (Linear minimum mean
square error estimator)

The algorithm can be understood better with this diagram [19]:

Known input
Evelution
of the system (control or Estimation State covariance
(true state) sensor of the state computation
maotion )
State at ¢, Input at ¢, State estimate at ¢, State covariance at ¢,
z(k) ulk) &(k|k) P(k|k)
Ewvaluation of Jacobians
PR
Fik) f(k)
— dz r=a4(k|k
Hik+1) ahik +1)
U‘I r £ + [
*) Transition to g, State prediction State prediction covariance
ol k
—> r(k4+1)= 2k +1|k) = — Pk + 1|k} =
Flk, 2(k), w(k)] + vik) Flk, &(k|k), u(k)] F(k)P(k| EYF(kY +Q(k)
Measurement prediction Residual covariance
3k +1]k) = S{k+1)=R(k+1)
hik + 1, #(k + 1|k)] +H(k+ DP(k+ 1|k)H(k + 1)
wik + 1) Measurement at ¢, Measurement residual Filter gain
sk+1)= vik+1)= Wik+1)=
hlk+1,2(k+ 1)) +w(k+1) s(k+ 1) — 2(k + 1]k) Pk + 1| k)H(k+ 1) S(k +1)-!
Updated state estimate Updated state covariance
(k4 1)k + 1) Pk 4+ 1|k 4 1) = Pk + 1]k)
Bk 4+ 1k) + Wik + 1)k + 1) Wik + 1)S(k + 1)W(k +1)
Ficure 3.6 — EKE.
3.10.1 Initial Value or previous estimate

We first receive a previous estimate and the covariance matrix. With these
values we have all the information needed for the estimator due to Markov
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property.

3.10.2  State prediction

We can use the system dynamics equation to obtain the a priori estimate for
k +1 given the data until k. This can be expressed as x(k + 1k).

3.10.3 Jacobian evaluation

We linearise f and h functions around the point of operation. And here we
can see that the state space function does not have to be invariant in time
necessarily.

3.10.4 State covariance matrix update

We calculate the new a priori state covariance matrix P(k+1|k). It is interesting
to say that Q increases our covariance each loop, meaning more uncertainty
from that input.

3.10.5 Residual covariance

At this point we use the new H and also add the measurement covariance R.

3.10.6 Kalman gain

This gain weights the importance we give to the estimation or measurement
depending on the uncertainty.

3.10.7 A posteriori state covariance update

It is important to point out the minus sign in the second term, it tells us that
the uncertainty is getting smaller so that our estimate is getting more precise.
3.10.8 A posteriori measurement prediction

In this step we calculate an estimate for the next measurement in which we
use the a priori state estimate X(k + 1|k).

3.10.9 Innovation vector

Innovation vector will be multiplied by the Kalman Gain to correct the esti-
mate with the a posteriori data. This vector can detect system failure. If the
vector follows a white noise, zero mean sequence the estimator is working
fine.






RoBoT LOCALIZATION

Once the algorithm was selected, the next step was apply it. For this purpose
I used Robot Localization ROS package. This package allows you to estimate
the pose of the robot on a 6 dimensions frame by applying the Extended
Kalman Filter explained above.

Using this package with ROS offers the possibility to add inputs to the
estimate (not covered on the project) from MAVROS. MAVROS is a package
from ROS that handles information from the most common civil drones
software. This node can input GPS signal and IMU mainly for the estimation.
The scope of this project does not contemplate the inclusion of these inputs but
using a flexible package gives better possibilities in future implementations.

3.11 SETUP ROBOT LOCALIZATION

Robot localization needs some parameters to filter the data that can be loaded
from a file, this file can be found on params with the name ekf_template.yaml.
In this case two inputs were used: the output from the stereo camera and the
output from the thermal camera. No probabilistic model was used for the
output data from ORB SLAM.

3.11.1 Filter frequency

The frequency for the filter was left the same as in the template (30 Hz) since
both nodes are giving poses at a lower frequency than that 30 Hz, if the fps
were higher, for example by using a different camera this parameter should
be increased. The same concept applies if an IMU or LIDAR was added to the
estimation.

3.11.2  Odometry configuration matrix

The "Each sensor reading updates some or all of the filter’s state. These options
give you greater control over which values from each measurement are fed
to the filter." The node needs to know which of the measurements will be
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received. For example there might be an accelerometer that gives data on
acceleration on x and z axis, in this sense the node needs to know which data
will be received. To specify it a configuration matrix was defined in a similar
was to the C matrix in state space representation; a 1 means that the input
will be provided.

odomConfig =

RO RS R
< O O
INFEE S N B S N

For both inputs the matrix is:

odomConfig =

S OO =
(=l eNel
S O O ==

Which means that we are receiving angular and linear position.
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ExXxPERIMENTAL REsULTS

4.1 KAIST MATERIAL

I downloaded KAIST Multispectral Pedestrian Detection Benchmark dataset as a
test for the monocular node with a thermal camera information. The program
was ran through terminal given the paths to the vocabulary and the guessed
calibration file.

andres@750:~$ rosrun ORB_SLAM2 Mono
Vocabulary/ORBvoc.txt calibration/FLIRKAIST.yaml
camera

/image_publisher /camera/image @

F1GURE 4.1 — Connection between camera and ORB-SLAM 2.

This project uses a multispectral camera (RGB and a Thermal FLIR aligned
cameras) for pedestrian detection both in daytime and night-time. This is
valuable to test how the thermal camera responds to different conditions. The
camera calibration was not provided by the dataset and that could affect the
tests. Even though the results are promising despite the fact that a proper
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camera calibration file would probably improve the results significantly. The
map created is robust to illumination changes and it was interesting to check
that the algorithm works during night-time.

% ¢ $ @ P L HLHY

FIGURE 4.2 — Current frame.

Figure 4.2 shows the current frame given by the camera with the corners
showed with a figure. Colouring the current frame made the system to be
slower. Thus, in the final application this feature was turned off.
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4.2 MAP

ORB-SLAM2: Map Viewer

Dle low Camera
DShm Points

[Cshow KeyFrames
D Show Graph

DLucalizatiun Mode

Reset :

FIGURE 4.3 — Point cloud Map.

The viewer of the map works correctly according the algorithm described.
The Point-Cloud is sparse, which means that there are not so many points,
this is normal for a monocular camera. Although valuable information can be
extracted from the map.
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% ¢t @B PLLHY

with pid [2758]
:11311/

setting /run_id to 284fe0aa-1256-11e8-91
oroces: ith pid [277
t]

FIGURE 4.4 — Full Mono node.

4.3 PUBLISHING FRAMES

Besides, I wrote a ROS package that simulates a camera publishing frames
on a topic. camera_simulator takes a list of images from frames.txt and if
you wish you can specify the fps. This file was created beforehand with
generateFrameList that I coded to have the format from KAIST dataset given
the starting and ending frame if you wish.
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#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <opencvZ2/highgui/highgui.hpp>
#include <cv_bridge/cv_bridge.h>
#include <string>
#include <fstream>
#include <iostream>
#include <stdlib.h>
int main(int argc, chars* argv)

{

int fps = 20;

if(argc>1) fps =atoi(argv|[1]);
ros::init(argc, argv, "image_publisher");
ros: :NodeHandle nh;
image_transport::ImageTransport it(nh);
image_transport: :Publisher pub =
it.advertise("FLIR/image", 1);
std::ifstream file("frames.txt");

if(file.is_open()){
std::string namefile;
ros::Rate loop_rate(fps);
while (nh.ok()) {
if(!file.eof()){
file >> namefile;

cv::Mat image = cv::imread(namefile, CV_LOAD_IMAGE_COLOR);
sensor_msgs: :ImagePtr msg = cv_bridge: :Cvimage(std_msgs::
Header(), "bgr8", image).toImageMsg();

std::cout << namefile << " published" <<std::endl;

pub.publish(msg);
ros::spinOnce();
}
loop_rate.sleep();
}
file.close();
}
}




36 CHAPTER 4. EXPERIMENTAL RESULTS

In addition, I created a package.xml and a CMakeLists.txt. Everything was
placed correctly in my catkin workspace and then I ran the catkin_make to
compile and install the code. Given that roscore is running, we can start
publishing frames by running the following command in our image folder :

andres@Z50:~$ rosrun camera_simulator camera_simulator 20

andres@Z50: ~/TFG/dataset/lwir

File Edit View Search Terminal Help

S rosrun camera_simulator camera_simulator
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published
published

4.p published
.png published

FIGURE 4.5 — Running camera_simulator.

Once the images are being published ORB-SLAM 2 will receive them as it
is subscribed to the same topic.

ORB-: rrent Frame

«e% t4@D0HHHY

ORE-SLAM2: Map Viewsr
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4.4 UC3M MATERIAL

4.4.1  Thermal Camera node

Initialization was possible with the Thermal camera but pure rotations made
the SLAM to get lost quite often. No camera calibration was available so
the map was not accurate. ORB SLAM 2 documentation states that if a low
resolution camera is used the conditions for initialization can be relaxed from
the calibration files but the results show that the initialization is weaker.
Initialization threshold was lowered to 10 to make initialization possible.

# ORB Extractor: Fast threshold

#Image is divided in a grid. At each cell FAST are extracted
imposing a minimum response.

# Firstly we impose iniThFAST. If no corners are detected

we impose a lower value minThFAST

#You can lower these values if your images have low contrast
ORBextractor.iniThFAST: 10

ORBextractor.minThFAST: 7

s v/ Leaf topics

7 Debug (v Unreachable | (v Highlight /it |(2]

=

odom

@ Time:

ROS Time: [1525354089.93 | ROS Elapsed: 455,93 Wall Time: [1525354089.42 | Wall lapsed: [455.91

Resat  Left-Click: Rotate. Middle-Cli i i 121ps

The stereo localization node generates a map sooner than the monocular
node. It has a denser point cloud than the monocular node. Robot localization
starts correctly once the system is initialized.
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CONCLUSIONS AND FUTURE
WORKS

The estimate for the position is promising but the results are not the best
that could be obtained, the reason is that a calibration matrix for the thermal
camera would be needed plus a transformation frame to relate both cameras.
Another aspect to be taken into account is the initialization from both cameras,
ORB SLAM 2 initializes the frames in an arbitrary frame which means that
both nodes are not related, not even in scale of maps. A global map processing
would be helpful to give solution to nodes getting lost.

A common node with the three cameras could have been implemented to
gain efficiency. Although, the expertise on this field and material for testing
were not sufficient to tackle the problem in that way, an initial implementation
has been done.

5.1 FUTURE WORKS

ORB SLAM 2 provides a Vocabulary file as explained before. That vocabulary
was obtained from images taken from a RGB camera in urban setting which
do not necessarily have to match the vocabulary from the thermal camera.
Moreover, if SLAM is performed by an aerial vehicle the trained environment
differs from the application environment probably reducing the matches. This
field should be tested.

In this project, SLAM did not have a probabilistic model to work with
making the covariances unknown. Tuning these covariances could make
improved the estimate.
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An algorithm was con-
sidered when exploring the
possibilities of the Ther-
mal camera. This pack-
age would bring the possi-
bility to colour a pointcloud
given the pose of the cam-
era in the coordinate frame
of such pointcloud. The
node projects the 3D point by
means of the camera calibra-
tion matrix and if the point
lands on the frame the value
of the pixel will give the tem-
perature of the point.

This implementation could
be applied also with RGB
cameras for LIDAR PC colour-
ing

5.1.1  Input from MAVROS
(GPS, IMU, input vector)

The system is ready to add
more inputs to improve the
estimate. This local and
continuous data is valuable
when the nodes loose track-
ing and resets. This problem
harms loop closing which is,
as a matter of fact, one of the

CHAPTER §5.

CONCLUSIONS AND FUTURE WORKS

Get point
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Project to IR
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key features in a SLAM algorithm.
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APPENDIX

SOFTWARE NEEDED

FOR THIS PROJECT ROS, OpenCV, robot localization and ORB-SLAM were
needed.

A.1 ORB SLAM 2

A.1.1 Pangolin

Pangolin is a lightweight library that manages OpenGL in the visualization
part of ORB-SLAM or ORB-SLAM2.

We first install Glew.

andres@Z50: ~

1 libglew-dev

CMake is also needed. But it was already installed.
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andres@Z50: ~

File Edit View Search Terminal Help

andres@Z50:~5 sudo apt-get install cmake

e

Reading package lists... Done

Building dependency tree

Reading state information... Done

cmake is already the newest version (3.5.1-1ubuntu3).

® upgraded, ® newly installed, ® to remove and 20 not upgraded.
andres@z50:~$ J]

And finally Pangolin can be installed from source:

git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin

mkdir build

cd build

cmake

cmake --build

A.1.2 Eigen3s

Eigenj is a library that allows you to operate with matrix including SVD. This
library is needed by G2o. To install it I downloaded it from the official website,
uncompressed it and installed it as follows

tar -zxvf eigen-eigen-5a0156e40feb.tar.gz
mkdir build

cd build

cmake ../eigen-eigen-b9cd8366d4e8

sudo make install

A.1.3 OpenCV

OpenCV is an open source library for computer vision, it can be ran in C++
as well as Python.
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sudo apt-get install cmake git 1libgtk2.0-dev
pkg-config libavcodec-dev libavformat-dev libswscale-dev

git clone https://github.com/opencv/opencv.git
unzip opencv

cd opencv

mkdir build

cd build

cmake -D CMAKE BUILD TYPE=Release -D
CMAKE_INSTALL PREFIX=/usr/local ..

make -j7

sudo make install

A.1.4 ORB-SLAM 2 installation

,

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

cd ORB_SLAM2

chmod +x build.sh
./build.sh
chmod +x build_ros.sh

./build_ros.sh

We also have to source the files, this can be done automatically if we put it

in .bashrc
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2 ROS

~

sudo sh -c¢ 'echo "deb http://packages.ros.org/
ros/ubuntu $(1sb_release -sc) main" > [etc/
apt/sources.list.d/ros-latest.list'

sudo apt-key adv --keyserver hkp://ha.pool
.sks-keyservers.net:80 --recv-key 421C365B
DOFF1F717815A3895523BAEEBO1FA116

sudo apt-get update

sudo apt-get install ros-kinetic-desktop-full

Now we have to configure ros.

sudo rosdep init
rosdep update
echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc
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